skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Margine, Elena_Roxana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metallization of the ionic hydride LiH has never been achieved experimentally, even under high external pressure. Herein, a novel “chemical capacitor” setup to facilitate its metallization under ambient pressure conditions is applied. The findings reveal that a single layer of this material can withstand doping levels up to an impressive 0.61 holes per H atom without structural collapse, as demonstrated in the ZrC | LiH | ZrC system. Additionally, the electron–phonon coupling strength (λ) reaches a remarkable value of 2.1 in the TiO | LiH | TiO system, indicative of the strong coupling regime. Superconductivity calculations further predict a maximum critical temperature () of 17.5 K for 0.31‐hole‐doped LiH with (LiBaF3)2as surrounding support layers in the absence of external pressure. 
    more » « less